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Abstract — Recently, much interest has been directed towards
software defined radios and embedded intelligence in telecom-
munication devices. However, no fundamental basis for cog-
nitive radios has ever been proposed. In this paper, we intro-
duce a fundamental vision of cognitive radios from a physical
layer viewpoint. Specifically, our motivation in this work is
to embed human-like intelligence in mobile wireless devices,
following the three century-old work on Bayesian probability
theory, the maximum entropy principle and minimal probabil-
ity update. This allows us to partially answer such questions
as “what are the signal detection capabilities of a wireless de-
vice?”, “when facing a situation in which most parameters are
missing, how to react?” and so on. As an introductory example,
we will present previous works from the same authors follow-
ing the cognitive framework, and especially the multi-antenna
channel modelling and signal sensing.

1. Introduction

In 1948, Claude Shannon introduced a mathematical theor
of communications [1], allowing two to three generations
of research to design increasingly sophisticated teleaomm

nication tools, whose purpose is to constantly increase th

achievable transmission rate over various communication
channels. One of the key conclusions of Shannon was tg

show that a linear increase in the transmission bandwidth

is expected to provide linear growth in the channel trans-

mission capacity, while linear transmit power increasey/onl
provide sub-linear capacity growth. As a consequence, th
last decades of research in telecommunications led to-a sit

ation in which the available transmission bandwidth became
dramatically scarce and can only be acquired by serviceg

providers at extraordinarily high prices. Then, in the ehd o
the nineties, the conclusions of Foschini [2] and Telatér [3
on their work on multiple antenna (MIMO) systems came
as a salvation: when increasing the number of embedde

antennas in both transmit and receive devices, a potentia\1v
linear growth (with the number of antennas) in capacity was.
expected. Since the exploitation of the space dimension ca
come virtually at a zero cost compared to the exploitation of

the frequency dimension, these stunning results rapidiy ge
erated lots of research work in the early years of the twenty
first century. However, practical applications of multiple-

tenna systems took a long time to be put in place, when i
was clearly realized that the exceptional predicted capaci
gain could only come at a very strong signal to noise ratio
(SNR) and for low correlated channels; for instance, line of

sight components in a transmission almost completely anni-
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this point in the evolution of wireless devices, the initied

sult from Shannon was still applicable to the most advanced
technologies.

After the MIMO delusion, Joseph Mitola [4] realized that
a new virtual dimension could be exploited to increase the
achievable transmission rate: making the radio smartez. Th
basic insight of Mitola was to observe that most allocated
bandwidth is not efficiently used in the sense that, most
of the time, large pieces of bandwidth are left unoccupied.
Emabling the wireless devices to sense the frequency spec-
trum in a decentralized manrfellows for a potentially high
increase obpectral efficiencywhich we define here as the
actual averaged transmission rate over the theoreticakeap
ity. These large-scope ideas from Mitola recently motigate
a wide range of research with common denominator the in-
troduction of intelligence in wireless devices. For ins@an
Haykin [5] introduces the concept of interference temper-
ature, which allows to control the level of interference al-
lowed in a network, i.e. if a given user has a rate constraint
largely inferior to the effective channel capacity, theess

Yinused rate could be used by another device, as long as this

device does not request more than the available excess rate.
This interference temperature brought the new idea of pri-
ary and secondary users in a wireless network: primary
users are those subscribers who are charged a high price to

m

communicate with high quality of service, while secondary
users pay a lower price to communicate over opportunistic
excess rates left unused by the primary users, e.g. [29, 30].
However, all these ideas, revolutionary as they may seem,
only scratch the surface of a larger entity that is the cogmit
radio. Indeed, if the cognitive radio is defined, as was sup-
osedly the prior idea of Mitola or even more certainly the
asic view of HaykiR, as a radio in which all entities are ca-
pable of cognition, then the limitations in the capabiitie
these radios is still unknown and not really explored. Con-

8rete works on smart devices date back to Shannon’s time as

ell. Claude Shannon was already interested in ideas such
as a robot capable of playing chess [6]; he provided an orig-
inal viewpoint of the cognitive abilities of future comptge
gack in 1953 [7] and even constructed a mind-reading ma-
chine, the circuitry of which is depicted in [8].

In this work, we propose to define a fundamental basis for
cognitive radios on a physical layer viewpoint, which en-

tables human-like intelligence in wireless devices. Thiskwo

comes as a rupture compared to previous telecommunication
work, as we will no longer rely on Shannon’s work, but will

150 to limit the needs for control signaling.

2remember that the title of his main contribution on cognitiveioa [5]

hilates the gain of multiple antenna systems. However, up taefers to “brain-empowered” radios
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rather extend it. The reasons why we escape from Shanthe cognitive devicg then the capacity will increase. All
non’s framework will be explained and justified in the fol- these primary observations lead to realize that the channel
lowing sections. The additional mathematical tools needectapacity is largely dependent on the prior information lavai
to extend Shannon’s theory of information are the theoryable at the receiver. In particular, two identical recesyer
of Bayesian probabilities, the maximum entropy principle facing the same channel, may have different actual capaci-
[9] and the minimal cross-entropy principle [13, 14], among ties depending on the individual channel state information
others. Assuming the noise is known to be Gaussian with zero
The remainder of this paper unfolds as follows: in Sectionmean, the receiver is left to estimate the noise variance. In
2., we present the key philosophical ideas which lead fromgeneral, only approximative values of the SNR are available
Shannon'’s classical information theory to Jaynes’ more genTherefore, the channel capacity might be better seen as a
eral probability theory. In Section 3., we provide two ex- rate vector with entries indexed by every possible values of
amples of direct application of Jaynes’ maximum entropythe SNR and taking different degrees of probability. These
principle to the problems of channel modelling and signal degrees of probability differ for each receiver, making the
sensing. Then in Section 4., we discuss the present advareapacity again information-dependent and user-dependent
tages and limitations of cognitive radios, and provide ourAs a matter of fact, what one would call “real capacity”,
conclusions in Section 5.. that would correspond to the capacity if the receiver knows
Notation: In the following, boldface lower-case symbols exactly the noise variance, does not carry in itself anyaictu
represent vectors, capital boldface characters denoté-mat significance: as recalled by Jaynes [9] pp. 634, the channel
ces (n is theN x N identity matrix). X;; denotes théi, j) capacity is not an intrinsic value of the channel but aniintri
entry of X. The Hermitian transpose is denotegt!. The  sic value of the level of knowledge of the system desifiner
operators & and|X| represent the trace and determinant,
respectively. The symbol [E denotes expectation. The
operator ve() turns a matrixX into a vector of the con-
catenated columns of. Finally, the notatiorP(y) denotes
the probability density function of the variabten position

2.2. Limitations of Information Theory

Already in 1963, Leon Brillouin [22] realized the fundamen-
tal limitation of Shannon’s information theory. In his own
X=Y. words, The methods of [information] theory can be suc-
cessfully applied to all technical problems concerning@inf
mation: coding, telecommunication, mechanical computers
etc. In all of these problems we are actually processing in-
formation or transmitting it from one place to another, and
the present theory is extremely useful in setting up rules an
stating exact limits for what can and cannot be done. But we
. . are in no position to investigate the process of thought, and
2.1. Channel Capacity Revisited we cannot, for the moment, introduce into our theory any
. . L element involving the human value of the information. This
Let us consider the simplest communication scheme, mod-",." .~ . : . -
elimination of the human element is a very serious limita-
elled as : . . .
B 1 tion, but this is the price we have so far had to pay for being
y=X+n @) able to set up this body of scientific knowledge. The restric-

for some transmit signai, additive background noiseand  tions that we have introduced enable us to give a quanti-
receive signay. The Shannon capacity of such a system tative definition of information and to treat information as

2. From Shannon to Jaynes

We will first present a simple example to show the inherent
limitations of Shannon'’s theory of information.

reads a physically measurable quantity. This definition cannot
C = supl (x;y) 2) distinguish between information of great importance and a
Px piece of news of no great value for the person who receives

with py the probability distribution of the variabletakenin It - Leon Brillouin, 1963. , S
the set of single-variable probability distributions, drge- ~ Within the realm of cognitive devices, this situation in wini
notes the mutual information [1]. The equality (2) can only information carries relevance, which depends on whom re-
be computed if the distribution afis known. In practicen ~ Ceives it, typically arises. Let us go back to the channel
is often taken as Gaussian, both for simplicity reasons and@pacity example above. If the receiver is provided with
because this is somehaftenclose to the reality. However, SOMe additional information concerning the transmission
there is no actual way to predict the distribution of the aois Medium, like the typical channel delay spread, the channel
before transmitting data, and in reality the expressiorig2) Doppler spread, the number of reflections, the presence of
impossible to compute. This leads to the conclusion thatouildings in the neighborhood, how much does this affect the
all capacity computations are in fact ordpproximationsf channel capacity is an open issue, which cannot be solved
Equation (2). Shere | A e devi d ot be ablafi

TR . there is no reason wi| y a COgnItIVe evice would not be ablefer bn
!\/Iqreover, it is important t_o opserve _that What we call NOISe, .\t the noise is made of.
IS In effect the sum Cont”bunor_‘ of |_nterfer|ng waves With  4ihe system designer can be seen as a virtual entity shasingidwledge
different properties. If part of this noise can be analyzgd b of both transmitter and receiver.
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within Shannon’s framework. And if the receiver experi- will decide to transmit at a rate 164+ x) such that/g p(t)dt
ences a poor decoding rate, what kind of information shouldis less than a given (small) value, while if performance with
it request to the transmitter in order to increase its perfor low reliability is sought for, thenx will take a larger value.
mance is also an open question, e.g. should the receiver ré&his part of the cognitive radio spectrum will not be covered
guest more pilot symbols at the risk of a huge waste in specin this contribution.

tral efficiency, should the receiver request some determinQuestion (ii), on the contrary, is the point of interest ie th
istic information regarding a given parameter of the chan-present paper. Given the total amount of prior information a
nel? All these problems do not have deterministic channelthe cognitive device, how to assign degrees of belief in a sys
dependent answers but depend on the specific knowledge ¢ématic way? The answer to this question partially appears
the transmitter/receiver pair to which some piece of addi-in the work of Shannon [1] but is better explained and devel-
tional information might or might not be valuable. oped by Jaynes [12] thanks to the introduction of the maxi-
To partially answer those questions, we propose in the fol-mum entropy principle (MaxEnt) [11]. The key idea behind
lowing to introduce first the notion oflegrees of belief  MaxEntis to find a density functiop, which fulfills the con-
which turns every deterministic measurable entity, e.@. th straints imposed by the prior informatidrwhile introduc-
value of the channel capacity, the value of the SNR or theing no additional (unwanted) information. In other words,
value of the channel fading, into a random variable with anthis density function should maximize the ignorance about
assigned probability distribution: this probability dibt- unknown parameters of the cognitive device, while satisfy-
tion will translate the confidence of the cognitive devices ing the constraints given ih In Jaynes’ terms, this density
regarding the estimation of the measurable entity in quesfunction is maximally non-committal regarding missing in-
tion. Then, we will introduce the notion otlevancewhich formation. This function translating ignorance is proven b
enables to estimate the relative importance of information Jaynes and more accurately later by Shore and Johnson [23]
Finally, we will discuss our general view of the capabibtie to be the entropy functioH,

of a cognitive radio.
H(p) = - [ log(p(V)) p(t)dt )

When the information contained Inis of statistical nature,
As briefly stated in the previous section, we aim at extendingsuch as first or second order statistics, the funciovhich
the classical Shannon’s information theory to enable cogni maximizes the entropy while satisfying the constraints$ in
tive devices with the ability oplausible reasoningThatis, s unique and can be computed with Lagrangian multipliers.
a cognitive radio should not rely on empirical (often erro- An example will be given in Section 3.1..
neous) decisions, but rather should be able to express doubt
and to reason honestly when provided with limited knowl-
edge. A first step in this approach is to turn empirical deci-
sions into degrees of belief. The problem of relevance of information is a second topic
in the establishment of foundations for cognitive radids. |
cognitive devices were to act like human beings, they should
be able to request additional information when they do not
have enough evidence to take decisions. For instance, to ob-
In the Bayesian philosophy, contrary to the orthodox proba-tain a more accurate estimate of the noise variarfce or-
bility philosophy, deterministic parameters of a systerg, e der to have more confidence on the achievable transmission
a weight, a height, the channel delay spread, which a cogrates, an intelligent device could require the transmitber
nitive entity needs to evaluate, must be characterizeddy th stop transmitting so that it can estimaté. But this would
degrees of belief attached to all possible values for this pabe an expensive waste in spectral efficiency, so it could al-
rameter. Therefore this gives a clear meaning for instamce tternatively request deterministic information on a detida
the probability that the height of the Eiffel Tower is 50 m. channel from the transmitter. How accurate this informmatio
As a consequence, assuming a cognitive telecommunicatiomust be is then another problem. To be able to decide on
device is not aware of the intensity? of the background whatquestionto ask to the transmitter, the cognitive device
noise, instead of expressing the achievable transmisatenr needs to be able to judge thelevanceof every possible
as the scala€ = log(1+ 02), which is therefore irrelevant question.
to the communication device, it would be more adequate toThis notion of questions or inquiries, is a philosophical
consider the “vectorC(x) = log(1+Xx), x> 0, attached to a  topic upon which little literature and very few concrete re-
degrees of belief function, i.e. a probability density ftioi, sults exist. In 1978, Cox [26], who is also at the origin of the
p(x) for each potential noise variange Two fundamental immense work from Jaynes on Bayesian probability theory
questions arise at this point: (i) how to use the ve€toq)?, [10], mathematically defined a question as the set of possi-
and (ii) how to compute(x)? ble answers to this question. Therefore, a question will be
Answering (i) is a matter adecision theoryin the sense that relevant if its answers carry valuable information. Assugni
different requirements might come into play to decide on thethe set of questions is seen as an ordered set, with thetlarges
actual transmission rate to use: if reliability is needete 0 questions being the most relevant (since their answerg carr

2.3. The Bayesian Approach

2.3..2 Relevance

2.3..1 Degrees of Belief and the Maximum Entropy Prin-
ciple
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potentially more cogent information), a cognitive devieec might provide faster responses), but it provides the most
decide which appropriate request to formulate to the transhonestway to treat the signal sensing problem. It is impor-
mitter. The work on relevance and questions is however stilltant to note that no signal detection strategy can be proven
in its infancy, but we insist that those are fundamental seed superior to any other as long as too much information on the
to the cognitive radio field; for instance, interesting e¢bnt communication environment is missing. If a given algorithm
butions are found in the works of Knuth [27], who uses lat- could be proven better than the Bayesian strategy, thisdvoul
tice theory to create partial orders of finite sets of quastio mean this algorithm has an information advantage; honesty
which is seen as the dual (in the lattice theory terminology)would then require that the Bayesian strategy be aware of

of the set of answers to those questions. this additional piece of information. The significant advan
tage of the Bayesian philosophy and the maximum entropy
2.3..3 What is a Cogpnitive Radio? principle over classical methods is that they do not to take

any empirical guess to solve a problem. Therefore, instead
In our viewpoint, a cognitive radio must ideally be able to of being either luckily very good, or unluckily very bad de-
adapt to its environment, by gathering all cogent informa-pending on the accuracy of this “guess”, they perform as
tion about the propagation channel, the transmitted signabest as their prior information allows them to.
etc. while never producing undesirable empirical informa- Al itive devi ht to b ble of i-
tion. This would therefore relieve the telecommunication / >0 & COgNitvVe device ougnt to be capable of reques

field from allad-hocmethods, based on empirical decisions ing information when !t faces a situation where. i.t crucial!y
concerning unknown parameters. This does not mean th:;'1|f°‘0|(S cpgent information; for mstanpe, a cognitive mobile
hone in a low network coverage situation, should be able

a cognitive device is not prone to making errors; however,p . . . .
these potential errors will never originate from erroneous'© request information (or even help) to the neighboring cel

system assumptions, but rather from lack of information phones which enjoy better coverage. The intere;t of this re-
which would generatdsroad maximum entropy distribu- guest would be measured by its relevance. Adding the pos-

tions. If more cogent information is provided to a cognitive sfﬂg:&s of for:iryylac'iun\% Inq\lj\lirtlﬁihmIggit"tevggtuall);nleiarl]d
device, it will integrate it and increase its decision calpab €nabing cognitive devices € ablity aiscussingin-

fe. I way i more sgnls acognive commiicaion”*24 S ESTIOAREETS BOecton o
device is fed with, the more efficient it is; this would mean P P

for instance that cognitive devices age wisely: the older th rer:gizseedl tga:hir;?ng?rr;;g?g?; O];ncevrﬂg# mggl?rr;;]ssrlr?i tf_act
cognitive device, the more efficient. P y y 0 P

. . , . ' ed information is assumed uncorrelated with subsequent
Regarding for instance signal sensing, the first steps o

which will be detailed in Section 3., we expect a cognitive ran_sm|_tted |nf0rmat|on,. !n 1973'. Marko proposed a gen-
) . . eralization of Shannon’s information theory framework to
device to process the received signals as follows,

encompass bidirectional communications [24], in the cbjec

1. initialization: integrate all cogent information about tive to accurately model the social interactions among ani-
the communication channel, the properties of the sup-Mals and especially human beings. The lead was then fol-

posedly received informative signal etc. and computelowed by Massey [25] who extends information theory to
the degrees of belief associated to all relevant vari-include feedback in the expression of Shannon’s mutual in-

ables. formation.

2. update loop: when the cognitive device is fed with
incoming signals, it shall update its degrees of belief
regarding all the previous variables and provide the
overall probability that the received signal originates

from a coherent data source. 3. Examples of Appllcatlon

3. decision: using some criterion from decision theory, Th tel ; . t of i dio lies |
e.g. the evidence for the presence/absence of a co- € mostelementary requirement of a cognitive radio fies in

herent data source is more than a given thresholdits sensing capabilities. When a waveform is received at the

the cognitive device declares whether data originatingcogmft've deype, Itt ml]fSt be cap:ble c;f deC|d|ngfyvr}ethesrt§h|
from a coherent source have been received. waveform originates from a coherent source of information

or if this waveform is pure background noise. When little

This protocol does not necessarily provide the most efficienis known by the receiver concerning the surrounding envi-

sensing strategy in specific situations (sometimes it mightonment, this problem is very intricate and has led to lots
provide a quick response, sometimes traditional algosthm of differentad-hoctechniques. Our purpose in the follow-

ing is to provide a unique way of deciding on the presence

Swhen little is known on a given parameter, the maximum entrogtyieli of a coherent data source given a specific amount of prior

bution attached to this parameter will be broad in the serstthspecific 4 mation at the receiver. First, we will discuss channel
value is preferred to any other, while when more informatioavigilable

on this parameter, the maximum entropy distribution will beyveeaky modell_ing, ‘_’VhiCh is a necessary step to properly handle the
around the exact value of the parameter. Bayesian signal detection method.
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3.1. MaxEnt Channel Modelling model complying with those constraints, in other words the
one which maximizes our uncertainty while being consistent
with the energy constraint. This statement is mathemdical
Channel modelling is an entire field of research in telecom-expressed by the maximization of the following expression
munications, which produces every year lots of new contri-involving Lagrange multipliers with respect Ry

3.1..1 Introduction

butions. However, this huge amount of previous work on

channel models leads to the following paradoxical conclu- L(Ay) = —/dHFh(H)Ioth(H)
sion: for a given total information gathered by a cognitive ng Nt

device, there exist many different channel models proposed + Vzi Z [E— /dH|hij 1?Ry(H)]
in the literature. In such a situation, which of those chan- i=1j=1

nel models is the cognitive device supposed to trust? In

reality, the fundamental difference between all those mod- +B {1 / dHH*(H)} Y
els lies in the additional hypothesis each of them, expficit
or implicitly, carries; some models might implicitly suggie
that channels usually have a short delay spread for a given dL(Py) WA

communication technology, or might suggest that itis very ~gg, —1-logRy(H) - V,Zl ,Zl‘hii ?-p=0 (8
likely to have a strong line of sight component etc. How- ==

ever, if the receiver is not aware of that implicit infornmatj ~ Which yields

If we deriveL(Ry) with respect tdy, we get

this very information should honesthyot be taken into ac- Py(H) = o (BHysiBy 3T 2
count. What we will provide in the following is a systematic
way to model channels, given some cogent information = ¢ A0 exp—(y | hj %)
which fulfill the constraints imposed Hywhile being non- il:l Dl N
committal regarding unknown parameters. In brief, we will e Ny
provide the most elementary models compliant wjthvith- = rl I_lﬁn (hij)
out introducing unwanted hypothesis. i=1)=
with b

. .. _ 2, p+1

3.1..2 Gaussian i.i.d. Channels P (X) =€ (VX" + ) 9)

Surprisingly enough, we will realize that most of the clas- One of the most important conclusions of the maximum
sical channels in the basic literature fall into the maximum entropy princip|e is that, while we have 0n|y assumed the
entropy channel modelling methodology. This is the caseknowledge about the variance, this assumption naturally im
of Gaussian i.i.d. channels. Indeed, let us assume that thsﬁes independent entries since the joint probabilityriist
informationl known to the cognitive device gathers the fol- tion Py simplifies into products oft,.. Therefore, based
lowing, on the previous state of knowledge, the only solution to the
maximization of the entropy is the Gaussian i.i.d. channel.
This does not mean that we have supposed independence of
2. the receiver is equipped witik receive antennas the channel fades in the model, nor does it mean that real
channels ought to be i.i.d. if those are known to be of en-
ergyE. However, in the generalizdd P-) expression, there

1. the transmitter is equipped withy transmit antennas

3. the channel carries an enefgy

The transmission model is exists no constraint on the dependence of the channel gntrie
5 and this leads to natural independence as an honest guess on
y= n—Hx +n 4) the behaviour of the channel entries. Another surprising re
\/ ny

sultis that the distribution achieved is Gaussian. Onc@aga
wherex € C" is the transmitted symbol vectan, € C™® Gaussianity is not an assumption but a consequence of the
the thermal or interfering noisg, the signal to noise ratio fact that the channel has finite energy.
(SNR) andH € C"T*"r the channel we want to model.
In mathematical terms, based on the fact that 3.1..3 Other Channel Models

NR Nt
2 _ - In [16], a more complete survey on MaxEnt channel models
_/dH i; ;'h” ["Ru(H) =nreE  (Finite energy (5) is proposed. We will gather in the following the main results

If the informationl at the receiver is the same as previously
/th(H) =1 (P4(H) is a probability distribution (6)  but the receiver is not aware of the exact value of the chan-
| nel energyE but knows that it is contained in the interval
what distributionP4® should the modeler assign to the chan- [0, Eyay, then
nel? The modeler would like to derive the most general

. AuH) = [PueH.E)E (10)
itis important to note that we are concerned vAtly wherel represents
the general background knowledge (here the variance) agethtulate the / =
H|E

(H)Re(E)dE (11)

problem. However, for the sake of readabil®y, will be denoted?.
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If Pz is assigned a uniform prior on the $@tEmay, thenwe  3.2..2 Signal Model

obtair/ . . . o
Given a certain amount of sampled signals, the objective of
B 1 © Rnr—20 3R ST Ry 2 the signal detection methods is to be able to optimally infer
Ry(H) = B TRIT /L uRTT e Smam T du on the following hypothesis:
m

(12)
Note that the distribution is invariant to unitary transfa-
tions, is not Gaussian and moreover the entries are notinde- o 3¢, Informative data added to background noise is
pendent when the modeler has no knowledge on the amount  eceived.
of energy carried by the channel. This point is critical and
shows the effect of the lack of information on the exact en-Given hypothesis S-iii), the only information on the trans-
ergy. mitted signal (undefH,) is its unit variance. The maxi-
If the channel covariance matri@ = E(veqH)veqH)") mum entropy principle claims that, under this limited state
is known to the receiver, and therefore is part of the of knowledge, the transmitted data must be modelled as i.i.d
side informationl, then, denotingQ = VAV" the spec- Gaussian [9]. The data vector, at tirhes {1,...,L}, is
tral decomposition of, with V = [v1,...,Vnen, | andA = denoteds!!) = (s(l'),,‘,,qu))T € C"r. The data vectors are
diag(A, ..., Angnr ), stacked into the receive matis= [sV, ... s1)].
If the noise levelo? is known, then either undéi(g or H,
RIT | viveqH) |? the background noise must be represented, due to the same
exp ; Ai (13) maximum entropy argument as before, bganplex stan-
= dard Gaussian matri® € C™**% (i.e. a matrix with i.i.d.
standard complex Gaussian entréig9 [28]. UnderJ{4, the
3.2. Signal Detection channel matrix is denoted € C"**"T with entry hj; be-
. ) . ing the link between thg™ transmitting antenna and the
Now that channel modelling has been investigated, the mU|-|th receiving antenna. The model fét follows the Max-

tiple antenna signal sensing problem can be completely hanEnt channel modelling rules
dled. '

e Hp. Only background noise is received.

1
e

In the present situation, only
the constant mean power (or equivalently, the energy) of the
channel is known. Thereford will be modelled as i.i.d.
3.2..1 Channel State Information Gaussian, following the reasoning in the previous section.
The received data at sampling tirhare given by thet x 1
In this problem, the cogent information at the receiver isvectory!!) that we stack, over the sampling periods, into
divided into known parameters, the matrixy = [yM,...,yU] € Cr*L,
This leads fotHg to the model,
S-i) the receiver hasg antennas.

Y =00 (14)
S-ii) the receiver samples as manyLames the input from
the RF interface. And for H; to
S
S-iii) the signal sent by the transmitter has a constant unit Y=[H, o] {G)] (15)

mean power. It is quite important to note that this hy- We also denote b the covariance matrix
pothesis is very weak and should be made more accu-

rate for communications schemes that are known only > = E[YYH] (16)

to use either QPSK, 16-QAM, 64-QAM modulations

for instance. =L (HH" +0%n) @)
= U(LA) UM (18)

S-iv) the MIMO channel has a constant mean powetr.

o _ o _ _ where A = diag(vi+02...,vpe+02%),  with
We similarly define additional information the receiver may {vi,ie{1,...,m}} the eigenvalues oHH" and U a
be aware of certain unitary matrix.
Our intention is to make a decision on whether, given the
received data matriX, the probability for}H; is greater than
the probability fori{y. This problem is usually referred to
ashypothesis testinfp]. The decision criterion is based on

V-i) the transmitter possesses (and usgsantennas.

V-ii) the noise variance? is known.

"the assignment of uniform priors on variables defined on aimonts the ratio P (Y)
space is a very controversial point of the maximum entropyrihechich C(Y) = HalY (19)
is longly discussed in [9]. Another classically used prighjch solves the Pj.(o‘y (Y)
problem of invariance to variable change is the so-calléfdeds’ uninfor-
mative prior [15]. which we need to decide is whether lesser or greater than 1.
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3.2..3 Results and Experiments

At this point in the derivation, computing resorts to mere

mathematical integration. The details of the calculus are

given in [17]. We only provide here the results. First, as-
sumeag? andnt are known, then, denotingy, ..., Xn, the

eigenvalues o¥YH,
Proe(Y) = rgrmr® (20
and
Ryjge, (Y)
= [ Rrisse, (Y. DRs()dz (22)

-/ Pyjs.36, (Y. UAU")PA(A)dUdA  (23)
U(nR) x (R+)"R '

which, after complete derivation, using in particular the
Harish-Chandra identity [18], gives

Zinl—leﬂi
Rrppe, (Y) = a i
|7 = m Ay v
e R
a4 j#ag
i#a
nr
X (*1)Sgr(b)+lr!JnR—L—2+b|(nTC72,nTXa;) (24)
be®P(nT) I=

with P(k) the ensemble of permutationslgfsgr(b) the sign
of the permutatiort,

y

+oo
J(X,y) :/ the -t dt (25)

X

and

n
Ziflxi
2

2,2_
(nR _ nT)!nT<2L7nT+1)nT/ZenT a

o= (26)

nR! RL g2 =) (L-nm) (70T T jy

These expressions are rather complex but show that the

Bayesian signal detection, within the state of knowletige
only depends on the eigenvalugs. . ., xn, of the Gram ma-
trix YY" of the received dat¥.

A comparison with the classical power detector, e.g. [19,
20, 21], which consists in summing all individual powers

received on the antenna array is provided in Figure 1. In the

latter,nt = 1 and the comparison is made between the dif-
ference “correct detection rate minus false alarm rate”-com
puted from Monte Carlo simulations for both Bayesian and
classical signal detectors.

We observe a slight gain in performance due to the novel

Bayesian detector. Especially, for a low false alarm rate

Mathematical Foundations of Cognitive Radios
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Fig. 1. Detection amplitude comparison in SIMOA=1,N =8,
L=20,SNR=-10dB
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(which is often demanded in practice), we observe a largd '9- 2 Detection amplitude comparison in MIMGM = 2,N =38,

gain in correct detection rate provided by the Bayesian de
tector. This statement is however only valid fof = 1.
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1w T ‘ ey T — Bayesian MaxEnt approach, the philosophical con-

S I A T S R B S clusions are very different. Usually classical meth-
\ '.__ | | \‘}\\ | | | ods derive from empirical parameter settings, which

08 RN U could have been chosen differently, while Bayesian

D S e e 37«11*}* - approaches give unique deterministic solutions, which

o6l v i\ o N stem from honesty in the treatment of prior informa-
i 1 . —— Large SNRrange (FA) tion.

05 n -] -~

- - - Short SNRrange (FA) | o .
ge (FA) e the MaxEnt principle allows one to marginalize over

False alarm and correct detection rates

04F-4-+4 -] - Exact SNR (FA) -
TR " —o— Large SNR range (CD) all parameters when those are not perfectly known.
03 1 &\ -e- Short SNRrange (CD) | As a consequence, while classical solutions are found
02| v |% | ® . .me  ExactSNR(CD) | anew, those methods can usually be extended to cope
o1l - l‘; 1 s with the lack of information on some key variables.
A | ) l ‘ l l For instance, in the signal sensing proposed in Section
T Y T 3. and completed in [17], the situations where noise
C(Y) [dB] variance and number of transmit antennas are not per-

fectly known can be easily handled, whereas classical
methods stumble on these problems and solve them by
empirical (possibly largely erroneous) parametriza-
tions.

Fig. 3. False alarm (FA) and correct detection (CD) rates for
exact, short discrete rang¢0(2.5,5}) and large discrete range
({-5,-25,0,2.5,5})) SNR-M=1,N=8,L=10,SNR=2.5dB

Wh s hen the ch | hardeni & q On the other hand, MaxEnt calculus and final solutions can
ennr is larger, then the channel hardening effect reduces, ., very rapidly extremely mathematically involved, as ex

m%v%i;ﬂ rc:f thezBayesian detector. This is shown in Figure 2empliﬁed by the final signal sensing formula in Section 3..
T = 2.

N if th ) 5. toctly k his i This is a major problem, and the subject of most criticism
low,_l t” € Qms_e POWED™ IS nkot peir gcty fnr:)wn (_t IS1S " towards Bayesian approaches. A missing part in these Max-
classically the situation since knowledge of the noise powe g, approach would be a systematic method which, from

implies prior identification of the background noise), the the general (very involved) solution, would provide approx
probat;ility distribution must bezupdated by marginal;zing imate solutions. Quite remarkably: Caticha provides a vi-
overza , from the lower bound= to the upper boundr; sion of the maximum entropy principle, or more precisely
ong*. Therefore, the minimum cross entropy principle, which might help de-
1 o2 cide on the optimal approximation taken from a set of pos-
R = 57 o2 /2 PY‘UzJ(YpZ)dU2 (27) sible approximations [31]. These considerations might lea
+ Vo= to such systematic approximation methods.
which is too involved to compute, but can be numerically ANOther point of concern in the MaxEnt framework lies in
estimated. An example is provided in Figure 3 in which the many integrals that may need to be computed when little
the intervalsjo?,0?] are taken increasingly large. In the 'S known on the surrounding environment. With the increas-
latter, correct detection rate against false alarm rateeis d "9 capabilities of modern computers, numerical approxi-
picted for different values ob2 and 2. It is observed ~Mations might help to compute those integrals, but these ap-
that the range of ensured correct detection gets incregsing Proximations would only be valid if not so many integrals
narrower wheno?,0?] is large. Note that this situation 2'¢ considered; two reasons explain this fact: first, the-com
cannot be compared against classical power detection mettp/€xity increase due to additional integrals is exponétia

ods which do not provide solutions whe is not perfectly the number of integrals and second, small errors in inner
Known. integrals tend to lead to large errors when integrated many

times (this is often referred to as the curse of dimensional-
ity).
4. Discussion As a consequence, while the first MaxEnt results provided
by the authors show significant performance increase, many
In addition to these first two studies on maximum entropy problems remain to be solved for cognitive radios to be
considerations for cognitive radios, the authors proposedully intelligent, both on fundamental philosophical cahs
more practical studies on maximum entropy OFDM channelerations (many questions raised in the introduction of the
estimation [32], maximum entropy carrier frequency offset present paper are left unanswered) and on practical applica
estimation [33], minimal update channel estimation [34] et tions.
From all those studies, we draw the following conclusions,

e quite often, classical techniques, in particular in the 5. Conclusion
channel estimation field, are rediscovered using Max-
Ent. However, it is important to note that, even if In this paper, we introduced the fundamentals of cognitive
the final formulas are the same in the classical andradios under a physical layer viewpoint. These fundamen-
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tals are based on the extension of Shannon’s informationi9] H. Urkowitz, “Energy detection of unknown determingssignals,”

theory to the Bayesian probability theory and the maximum

Proc. of the IEEE, vol. 55, no. 4, pp. 523-531, Apr. 1967

entropy principle, which enables the cognitive devicesiwit [20] V. I. Kostylev, “Energy detection of a signal with RardoAmpli-

plausible (human-like) reasoning. Through the first-step

tude”, Proc IEEE Int. Conf. on Communications (ICC’'02). Newk/o
City, pp. 1606-1610, May 2002.

studies of maximum entropy channel modelling and signal[21] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Spatialetps
sensing, we paved the path to the establishment of strong ~ joint detection for wideband spectrum sensing in cognitadio net-
theoretical grounds to the realm of cognitive radios.
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