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ABSTRACT
This article considers statistical inference of the transmit powers of
multiple signal sources by a sensor network. Using random matrix
methods, an exact expression of the posterior probability of the joint
transmit powers is derived. This expression is used to implement the
associated ML and MMSE detectors of the joint powers. These are
compared for small system sizes against an asymptotically unbiased
estimator obtained from large dimensional random matrix theory.

I. INTRODUCTION
Several works have recently emerged which use large dimen-

sional random matrix theory in order to address array processing
problems and in particular statistical inference, see e.g. [1], [2],
[3]. Large dimensional random matrix theory has often proven
to provide compact and computationally simple results to deal
with multi-variate problems in wireless communications, many
examples of which are detailed in [4]. Nonetheless, few results
are available that evaluate the performance of these methods for
signal processing purposes. In this article, we consider a simple
problem of multiple source power estimation for which [2] provides
a large random matrix estimator but which we address here from
an optimal finite dimensional point of view in order to compare the
performance of optimal maximum likelihood (ML) and minimum
mean square error (MMSE) estimators to the performance of the
large dimensional estimator.

II. POSITION OF THE PROBLEM
We consider the scenario of K signal sources, source k being

equipped with nk collocated antennas. A sensor network composed
of N sensors captures the data originating from the K sources
in M consecutive time samples y1, . . . ,yM ∈ CN , collected in
the matrix Y = [y1, . . . ,yM ] ∈ CN×M . The power of source k
received at the sensor array is denoted Pk. Denoting Hk ∈ CN×nk
the Gaussian channel between source k and the sensor array
(constant during the M observations), with entries of zero mean
and variance 1/N , we then have the communication model

Y =

K∑
k=1

√
PkHkXk + σW (1)

with Xk ∈ Cnk×M formed by the M successive data vec-
tors transmitted by source k, assumed Gaussian with entries of
zero mean and unit variance and W the receive AWGN matrix
with entries of zero mean and unit variance. Writing H ,
[H1, . . . ,HK ] ∈ CN×n, X = [XT

1 , . . . ,X
T
K ]T ∈ Cn×M and

P = diag(P1, . . . , P1, P2, . . . , P2, . . . , PK , . . . , PK) with Pk of
multiplicity nk and where n ,

∑K
k=1 nk, we finally have

Y = [HP
1
2 σIN ]

[
X
W

]
. (2)

We further denote R the covariance matrix of ym, conditionally
on H, i.e. R = E[ymyH

m] = HPHH + σ2IN .
We seek an explicit expression for the posterior probability

PP1,...,PK |Y(Y). From Bayes’ rule, we have

PP1,...,PK |Y(Y) = PY|P1,...,PK (Y)
PP1,...,PK

PY(Y)
(3)

with

PY(Y) =

∫
RK+

PY|P1,...,PK (Y)PP1,...,PKdP1 . . . dPK

(4)

PY|P1,...,PK (Y) =

∫
{R>0}

PY|R,P1,...,PK (Y)PR|P1,...,PKdR.

(5)

The question here is to express explicitly the quantities PY|R(Y)
and PR|P1,...,PK .

III. POSTERIOR DISTRIBUTION OF P1, . . . , PK

We assume in the following that n ≤ N ≤ M and we further
denote P = diag(p1, . . . , pn), i.e. pn1+...+nk−1+1 = . . . =
pn1+...+nk = Pk and define the mapping η(i) to be such that
pi = Pη(i).

Now, conditioned on R, the entries of Y are the linear com-
bination of Gaussian random variables with zero mean and unit
variance. The matrix Y ∈ CN×M is therefore Gaussian of zero
mean and columns of covariance R. Therefore we have

PY|R(Y) =
1

πNM
∏N
i=1 λ

M
i

e− trR−1YYH

(6)

=
1

πNM
∏N
i=1 λ

M
i

e− trUΛ−1UHYYH

(7)

where R = UΛUH for U ∈ CN×N unitary and Λ the diagonal
matrix of the eigenvalues of R. We now need a variable change to
compute

PY|P1,...,PK (Y) =

∫
Sn(σ2)

PY|R,P1,...,PK (Y)PR|P1,...,PKdR

(8)
with Sn(σ2) the cone of positive definite complex matrices with
smallest N − n eigenvalues equal to σ2. To this end, consider the
one-to-one map

G : (U(N)/T )× (σ2,∞)n≤ → Sn(σ2) (9)

(U,Λn) 7→ R = UΛUH (10)

where Λ =

(
Λn 0
0 σ2IN−n

)
with U(N)/T the space of N ×

N unitary matrices with first column composed of real positive
entries and (σ2,∞)n≤ the space of diagonal n × n matrices with



non-decreasing real positive diagonal entries greater than σ2. After
variable change, we have

PY|P1,...,PK (Y) = (11)∫
PY|G(U,Λn),P1,...,PK (Y)PG(U,Λn)|P1,...,PK |J(G)|dUdΛn

with J(G) the Jacobian matrix of G and the integral is taken over
the product space (U(N)/T )× (σ2,∞)n≤.

For fixed P, R − σ2IN = HPHH is similar to the Wishart
matrix P

1
2 HHHP

1
2 = P

1
2√
N

(NHHH) P
1
2√
N

; it therefore has the
same non-zero eigenvalues. The expression of the ordered non-zero
eigenvalue density of P

1
2 HHHP

1
2 , given by [5, Equation (94)],

appears to be independent of eigenvalue labeling. This implies that
the density of the unordered largest n eigenvalues of R is merely
equal to 1/n! times their ordered eigenvalue density. Moreover note
that the density of R is invariant by left- and right-product by
unitary matrices. The eigenvectors of R are therefore uniformly
distributed over U(N). This allows us to write

PY|P1,...,PK (Y) = (12)∫
PY|G+(U,Λn),P1,...,PK

(Y)PG+(U,Λn)|P1,...,PK
|J(G)|dUdΛn

where we denoted G+ the extension of G to the surjective
function defined on U(N) × (σ2,∞)n and the integral is de-
fined on this space. Since the (Haar) density of U is uniform
over U(N) and is set here to 1 without loss of generality, we
can identify PG+(U,Λn)|P1,...,PK

(U,Λn)|J(G)| with the density
PΛn|P1,...,PK (Λn) of Λn, to obtain

PY|P1,...,PK (Y) =

∫
PY|UΛUH,P1,...,PK

(Y)PΛn|P1,...,PKdUdΛn

(13)
the integration being over U(N)× (σ2,∞)n.

The random matrix Λn follows the Wishart distribution [5]

PΛn|p1,...,pn(λ1, . . . , λn) =

∏n
i=1

NN

pNi

∏n
i=1(λi − σ2)N−n

n!
∏n
i=1(N − i)!(n− i)!

×
n∏
i<j

(λj − λi)2
∫
U(n)

e− trNP−1U(Λn−σ2In)U
H

dU (14)

for λi ≥ σ2. From the Harish-Chandra formula, (Lemma 1,
Appendix B), we have

PΛn|p1,...,pn(λ1, . . . , λn) = lim
pi→Pη(i),∀i

Nn(N−n−1
2

)

n!
(15)

×
n∏
i=1

(λi − σ2)N−n

(N − i)!

n∏
i<j

(λj − λi)
det

(
e
−
N(λj−σ

2)

pi

)
∏n
i=1 p

N−n+1
i

∏n
i<j(pj − pi)

and we are now in position to evaluate the posterior distribution of
the Pk’s. We present hereafter the final result of the integration in
(12) and associated derivations when nk = 1 for all k.

Theorem 1: If p1, . . . , pn are distinct, then, denoting y =
(y1, . . . , yN ) the eigenvalues of YYH, PY|p1,...,pn(Y) is given

explicitly by (16) below, where SNn is the set of all permutations
of n-subsets of {1, . . . , N}, Sn = Snn, |x| =

∑
i xi, x̄ is the

complementary of the set x, x[y] is the restriction of x to the
indexes in y, ∆(x) is the Vandermonde determinant of x, the
constant C(σ2) is given by

C(σ2) =
Nn(M−n−1

2 )

πNMn!

(−1)nN+1

σ2(N−n)(M−n) (17)

and

Jk(x, y) =

∫ ∞
x

uke−u−
y
u du (18)

= 2y
k+1

2 K−k−1(2
√
y)−

∫ x

0

uke−u−
y
u du.

The complete derivation of this result is provided in Appendix
A. Furthermore, we provide Lemma 2 in Appendix B which can
be used to generalize Theorem 16 to the nk ≥ 1 scenario.

IV. SIMULATION RESULTS
Figure 1 depicts an example of the posterior probability density

(16) for K = 2 sources and n1 = n2 = 1. The peak accurately
identifies the true powers, despite the small number of samples and
the fact that only the channel statistics are known to the estimator.
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Fig. 1. PY|P1,P2
(normalized) for M = N = 16, σ2 = 0.01 and

a randomly selected channel realization. True (P1, P2) = (1, 5).

We now provide a performance comparison of various estimators
of the powers P1, . . . , PK . First, based on Theorem 16, ML and
MMSE estimators for P1, . . . , PK can be derived. Precisely, the
joint ML estimator is defined as

arg max
P1,...,PK

PY|P1,...,PK = arg max
P1,...,PK

PP1,...,PK |Y (19)

while the joint MMSE estimator is given by

1

Z

∫
(P1, · · · , PK)PP1,...,PK |YdP1 . . . dPK (20)

with Z =
∫
PP1,...,PK |YdP1 . . . dPK a normalizing constant. Ex-

tensive simulations of the ML and MMSE estimators are however

PY|p1,...,pn(Y) =
C(σ2)e

∑n
i=1

Nσ2

pi∏n
i=1 p

M−n+1
i ∆(p)

∑
a∈SNn

(−1)|a|sgn(a)e
− |y[ā]|

σ2
∆(y[ā])

∆(y)

∑
b∈Sn

sgn(b)

n∏
i=1

JN−M−1

(
Nσ2

pbi
,
Nyai
pbi

)
(16)



P1 P2

Optimum MMSE 0.1239 0.1278
Large dimension 0.1514 0.1332

Table I. Normalized mean square error of the estimates.

difficult to obtain due to the necessity of computing several nested
numerical integrals. As such, these estimators are only attractive
from a theoretical point of view when compared to alternative
estimators. In particular, we compare here the performance of the
optimal ML and MMSE estimators to a computationally efficient
estimator which assumes that all system dimensions are very large
and which we introduce hereafter.

In [2], a large dimensional random matrix theory estimator
(P̂1, . . . , P̂K) of (P1, . . . , PK) is derived, which is asymptotically
almost surely accurate in the sense that P̂k−Pk → 0 almost surely
as N,n1, . . . , nK ,M →∞ with finite limiting ratios between all
pairs of variables. This relation however holds true under some
conditions requiring that the eigenvalues λ = (λ1, . . . , λN )T of
1
N

YYH are divided in K distinct clusters. This is achieved in
particular at high signal to noise ratio, i.e. small values of σ
compared to mink Pk, for M/N rather large and N/nk rather
large for each k. Under these conditions, the estimator is explicitly
given by

P̂k =
NM

nk(M −N)

∑
i∈Nk

(ηi − µi) (21)

in which Nk = {N −
∑K
i=k ni + 1, . . . , N −

∑K
i=k+1 ni} is the

set of indexes matching the cluster of eigenvalues in the spectrum
of 1

N
YYH corresponding to Pk, (η1, . . . , ηN ) are the ordered

eigenvalues of the matrix diag(λ)− 1
N

√
λ
√
λ

T
and (µ1, . . . , µN )

are the ordered eigenvalues of the matrix diag(λ) − 1
M

√
λ
√
λ

T
.

A generalization of the formula for M = N can be found in [2].
We consider a the scenario with K = 2 signal sources with

n1 = n2 = 1, N = M = 16 and σ2 = −20 dB. In Figure
2, the cumulative distribution function (CDF) of 10, 000 Monte
Carlo simulations for the ML and MMSE estimators against the
large dimensional estimator are depicted. The plots suggest that
both the ML and MMSE estimators perform similarly and only
slightly outperform the large dimensional estimator in the sense that
(i) the standard deviations of the individual estimators is smaller,
as confirmed by the comparatively steeper CDF around the true
powers and (ii) the source separation is higher, as suggested by the
more pronounced flattening of the CDF between the true powers.
Table I provides comparative normalized mean square error figures
of the individual estimates. We notice here that the gap between
the optimal and large dimensional methods is not significant. This
suggests that the large dimensional estimator is very robust to
applications in small dimensional systems, a remark which is often
made in the applied research domain of large dimensional random
matrix theory [4].

V. CONCLUSION
In this article, blind maximum likelihood and minimum mean

square error estimators of the joint powers of multiple signal
sources are evaluated. These estimators are compared in perfor-
mance to a recent estimator obtained by large dimensional random
matrix analysis. The latter is shown by simulations to perform close
to optimally even for small system dimensions, suggesting once
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Fig. 2. Distribution function for the detection of two power sources,
P1 = 1, P2 = 4. Optimum against Stieltjes transform method.

again that random matrix theory is an adequate tool for future array
processing questions, arising in particular in telecommunications.
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APPENDIX A
PROOF OF THEOREM 16

Recall that, according to the hypotheses of Theorem 16, all
p1, . . . , pn are distinct. From (13), the expression of PY|p1,...,pn (Y)
is ∫

Nn(N−n−1
2

)

πNM
∏N
i=1 λ

M
i

e− trUΛ−1UHYYH

n!
∏n
i=1(N − i)!

det

(
e
−
N(λj−σ

2)

pi

)

×
∏n
i=1(λi − σ2)N−n

∏n
i<j(λj − λi)∏n

i=1 p
N−n+1
i

∏n
i<j(pj − pi)

dUdΛ. (22)

Applying the Harish-Chandra theorem, (Lemma 1 in Appendix B),
this leads after some simplifications to∫

Λ

Nn(N−n−1
2

)∏N−n−1
i=1 i!

∏n
i=1(λi − σ2)N−n

πNMn!
∏N
i=1 λ

M−N+1
i

∏n
i=1 p

N−n+1
i

∏n
i<j(pj − pi)

×

det

(
e
−
N(λj−σ

2)

pi

)
n

det

(
e
− yi
λj

)
N∏N

i<j(yj − yi)
dΛ (23)

where the index n in det(X)n is here to recall the size of the underlying
matrix.

At this point, we realize that both extreme right numerator and
denominator are null since the smallest N − n eigenvalues of
λn+1, . . . , λN are all equal to σ2. In order to solve this indeterminate
form, we then use [7, Lemma 6], to obtain, after simplification

PY|p1,...,pn (Y) =

∫
Λ

Nn(N−n−1
2

) det

(
e
−
N(λj−σ

2)

pi

)
n

πNMn!σ2(M−N+1)(N−n)∏n
i=1 λ

M−N+1
i

(24)

×
det

[
e
− yi
σ2 , . . . ,

(
yN−n−1
i

σ4(N−n−1) + . . .

)
e
− yi
σ2 , e

− yi
λ1 , . . . , e

− yi
λn

]
∏n
i=1 p

N−n+1
i

∏n
i<j(pj − pi)

∏N
i<j(yj − yi)

dΛ



which is well defined since all pi’s are different. If they were not,
Lemma 2 would be needed, which leads to a rather lengthy expression
which we do not further discuss here for simplicity. We mention that

the notation ‘. . .’ in
(

yN−n−1
i

σ4(N−n−1) + . . .

)
e
− yi
σ2 indicates that the extra

terms are polynomials of the variable yi of degree less than yN−n−1
i .

It is clear that linear combinations of the first columns allows one to
discard all these extra terms and therefore we can consider the matrix
that only has one leading coefficient yki in the entries of column k.

Extracting the successive powers of σ which multiply each column
and then the successive terms e

− yi
σ2 which multiply each row, we

therefore further have

PY|p1,...,pn (Y) =

∫
Λ

Nn(N−n−1
2

)

πNMn!

det

(
e
−
N(λj−σ

2)

pi

)
n

e
− |y|
σ2

σ2(N−n)(M−n)∏n
i=1 λ

M−N+1
i

(25)

×
det

[
1, yi, . . . , y

N−n−1
i , e

−(
yi
λ1
− yi
σ2 )

, . . . , e
−(

yi
λn
− yi
σ2 )
]

∏n
i=1 p

N−n+1
i

∏n
i<j(pj − pi)

∏N
i<j(yj − yi)

dΛ.

We now develop the second determinant successively along its last
n columns. Noticing that the square matrix formed of the first N − n
columns with any missing rows a1, . . . , an is a Vandermonde matrix
with determinant ∆(y[ā]) =

∏
i<j

i,j /∈{a1,...,an}
(yj − yi), we obtain

det

[
1, yi, . . . , y

N−n−1
i , e

−(
yi
λ1
− yi
σ2 )

, . . . , e
−(

yi
λn
− yi
σ2 )
]

(26)

=
∑

a∈SNn

(−1)|ai|+Nn+1sgn(a)∆(y[ā])
e
−

∑n
i=1

yai
λi e

1
σ2

∑n
i=1 yai

∆(y)

with SNn , n ≤ N , the set of all permutations of the n-subsets of
{1, . . . , N}. The factor (−1)|ai|+Nn+1 is linked to the determinant
expansion formula and is obtained when considering the different row
indexations resulting from successive removals of rows from the main
N ×N matrix.

It remains to express the first determinant of (25) under the form of
products of functions of the λi’s. This unfolds directly by writing

det

(
e
−
N(λj−σ

2)

pi

)
n

= e
−Nσ2 ∑n

i=1
1
pi det

(
e
−N

λj
pi

)
n

(27)

= e
−Nσ2 ∑n

i=1
1
pi

∑
b∈Sn

sgn(b)

n∏
i=1

e
−N yi

pbi

with Sn = Snn.
Gathering those results together, we end up with

PY|p1,...,pn (Y) =
Nn(N−n−1

2
)

πNMn!

(−1)nN+1

σ2(N−n)(M−n)
e
Nσ2 ∑n

i=1
1
pi∏n

i=1 p
N−n+1
i ∆(p)

×
∑

a∈SNn

(−1)|a|sgn(a)e
− |y[ā]|

σ2
∆(y[ā])

∆(y)
(28)

×
∑

b∈Sn

sgn(b)

n∏
i=1

∫ ∞
σ2

λN−M−1
i e

−Nyi
pbi
−
yai
λi dλi.

With the change of variable u = Nyi/pbi , the integral above becomes∫ ∞
σ2

λN−M−1
i e

−Nyi
pbi
−
yai
λi dλi =

NM−N

pM−Nbi

JN−M−1

(
Nσ2

pbi
,
Nyai
pbi

)
.

Inserting the factor NM−N

pM−N
bi

JN−M−1 in the expression of

PY|p1,...,pn (Y), we finally obtain (16).

APPENDIX B
LEMMAS

Lemma 1 ([6]): For non singular N×N positive definite Hermitian
matrices A and B of respective eigenvalues a1, . . . , aN and b1, . . . , bN ,
such that for all i 6= j, ai 6= aj and bi 6= bj , we have∫

U∈U(N)

eκ tr(AUBUH)dU

=

(
N−1∏
i=1

i!

)
κ

1
2
N(N−1) det

(
{e−bjai}1≤i,j≤N

)
∆(A)∆(B)

(29)

where, for any bivariate function f , {f(i, j)}1≤i,j≤N denotes the
N ×N matrix of (i, j) entry f(i, j), and U(N) is the space of N ×N
unitary matrices.

Lemma 2 (Generalization of [7, Lemma 6]): Let f1, . . . , fN be a
family of infinitely differentiable functions and let x1, . . . , xN ∈ R.
Denote

R(x1, . . . , xN ) ,
det
(
{fi(xj)}i,j

)
∏
i<j(xj − xi)

. (30)

Then, for N1, . . . , Np such that N1+. . .+Np = N and for y1, . . . , yp ∈
R distinct

lim
x1,...,xN1

→y1
...

xN−Np+1,...,xN→yp

R(x1, . . . , xN ) (31)

=
det
[
fi(y1), . . . , f

(N1−1)
i (y1), · · · , fi(yp), . . . , f

(Np−1)
i (yp)

]
∏

1≤i<j≤p(yj − yi)NiNj
∏p
l=1

∏Nl−1
j=1 j!

.

The proof, by induction, following the technique outlined in [7, Lemma
6], is omitted here.
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