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ABSTRACT

This paper focuses on the problem of detecting a target in the pres-
ence of a compound Gaussian clutter with unknown statistics. To
this end, we focus on the design of the adaptive normalized matched
filter (ANMF) detector which uses the regularized Tyler estimator
(RTE) built from /N-dimensional observations X1, - - - , X, in order
to estimate the clutter covariance matrix. The choice for the RTE is
motivated by its possessing two major attributes: first its resilience
to the presence of outliers, and second its regularization parameter
that makes it more suitable to handle the scarcity in observations.
In order to facilitate the design of the ANMF detector, we consider
the regime in which n and NV are both large. This allows us to derive
closed-form expressions for the asymptotic false alarm and detection
probabilities. Based on these expressions, we propose an asymptoti-
cally optimal setting for the regularization parameter of the RTE that
maximizes the asymptotic detection probability while keeping the
asymptotic false alarm probability below a certain threshold. Nu-
merical results are provided in order to illustrate the gain of the pro-
posed detector over a recently proposed setting of the regularization
parameter.

1. INTRODUCTION

We consider the problem of detecting a complex signal vector p cor-
rupted by an additive noise as:

y=ap+x

where y € C N-dimensional received vector, x stands for the
noise clutter and « is a complex scalar modeling the unknown target
amplitude. The signal detection problem is phrased as the following
binary hypothesis test:

Hiy:
H 0 -
In order to account for the impulsive nature of the noise, we assume

that the probability distribution of x belongs to the class of com-
pound Gaussian distributions, that is x satisfies:

y=ap+x

y =X M

1
x =+7CZw

where T is a positive scalar random variable, referred to as the texture
in the parlance of radar detection, Cy is the covariance matrix of
the clutter, and w is a NV X 1 normal distributed vector independent
of 7. Theoretically speaking, the scalar 7 can follow any positive
distribution. However, in order to reflect the impulsive character
of the noise, it makes more sense to assume its being heavy-tailed
distributed. Several distributions can be considered, among them
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we distinguish the t-student distribution, the Generalized Gaussian
distribution, and the K-distribution, to name a few [1].

The design of an appropriate statistic to the above hypothesis
test in (1) depends on the amount of knowledge that is available to
the detector. If the clutter is Gaussian and the covariance matrix C
is known up to a scale factor, while « is unknown, the Generalized
Likelihood Ratio (GLRT) for the detection problem in (1) results in
the following test statistic:

T ly*Cy'p|
N =
V¥ Crlyy/yp Ci'p

This statistic corresponds to the normalized matched filter detector
(NMPF). It has been derived independently by several works, lead-
ing to many other alternative appellations like the constant false
alarm (CFAR) matched subspace detector (MSD) [2], or the linear
Quadratic GLRT (GLRT-LQ) detector [3]. It is worth pointing out
that the optimality of this statistic in regards of the GLR principle
holds only when the clutter is Gaussian. In case of non-Gaussian
clutters, the optimal test statistic depends on the distribution of the
texture 7. However, the use of Ty for non-Gaussian clutters have
often been considered as a reasonable alternative, for two major rea-
sons. First, the clutter distribution cannot be easily acquired in prac-
tice, and second, it has been established that T approximates the
optimal statistic when N tends to infinity and that regardless of the
underlying texture distribution [4]. The only requirement that im-
poses the use of Ty is the estimation C up to a scale factor, which
is not viewed as a stringent requirement, being frequently considered
by radar detection applications.

In order to acquire an estimate of Cn, we assume the detector
uses n independent and identically distributed signal free observa-
tion, X1, - - - , X,. Based on these observations, which are in passing
often called secondary data, several estimators of the scatter matrix
can be considered. The most appropriate ones are those belonging to
the class of robust-estimators, being well-recognized for their high
resilience to the impulsive nature of the clutter. Of interest in this pa-
per is the regularized Tyler estimator defined as the unique solution
to:
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where p € (max (0,1 — %), 1). This estimator can be thought of as
a hybrid-robust shrinkage estimator reminding Tyler’s M-estimator
of scale and Ledoit-Wholf’s shrinkage estimator. It will be thus
coined Regularized Tyler Estimator (RTE). Besides its robustness,
the RTE has many interesting features. First, it is well suited to the
cases in which cxy £ % is large while standard robust-scatter es-
timates are ill-conditioned if not defined when N > n. Second, it



defines a whole class of robust-scatter estimators for different set-
tings of the regularization parameter p. By varying p, one can move
from the unbiased Tyler estimator (p = 0) to the identity matrix
(p = 1) which represents a crude guess for the unknown covari-
ance matrix Cy. Substituting Cn by Cx (p) in T, we obtain the
following test statistic:

) [y €t (o)p|
N(p) =
VY G 0y /b Cr (o)p

The detector corresponding to the use of fN(p) as a decision rule
is coined adaptive normalized matched filter detector (ANMF) in
reference to the step of estimating the clutter covariance matrix.
Upon replacing in Ty the unknown covariance matrix by the RTE,
the question of how should the regularization parameter p be se-
lected naturally arises. While easy-to-compute settings have been
proposed in recent works [5, 6], one of the major criticisms to these
choices is that they are performed regardless of the application un-
der consideration. A more appropriate choice to the application un-
der study would be to select the values of p that maximize the de-
tection probability while keeping fixed the false alarm probability
to a certain threshold. To achieve this goal, we need to character-
ize the distribution of Ty (p) under Hypothesis Hy and Hy. Obvi-
ously, this task might be unachievable if N and n are considered as
fixed. To overcome this issue, we relax this assumption and con-
sider the asymptotic regime in which N and n grow to infinity with
N — ¢ € (0,00). This will allow us to leverage the recent results
of [7] regarding the asymptotic behaviour of quadratic forms with
kernel the RTE.

2. OPTIMAL DESIGN OF THE ANMF DETECTOR

A crucial step towards the design of the ANMF detector is to analyze
its corresponding false alarm and the detection probabilities. For
tractability, this task is carried out under the following asymptotic
regime:

Assumption A-1.
tem dimensions:

We assume the following growth rate of the sys-

N,n — oo with CN:E%CE(O,OO)
n

Additionally, we assume that the secondary data x, - - -
isfy the following:

, Xn, Sat-

1
Assumption A-2. Fori € {1,--- ,n}, x; = Ckw; with:
e Wi, -, Wy are N X 1 independent standard Gaussian ran-
dom vectors with zero-mean and covariance I,

e Cy €
%U‘CN =1,

CNXN

is such that limsup ||Cn|| < oo and

e liminfy %p*CNp > 0.

Note that the normalization %trC ~ = 11is not a limiting con-

straint since Ty is invariant to the scaling of Cy.

We aim at providing asymptotic expressions approximating for
the false alarm and detection probabilities. The latter write more for-
mally as P [fN > I‘\Ho] and P [fN > I‘\Hl] A close inspection

to the behaviour of Ty reveals that for all ' > 0 fixed, the probabil-
ity of false alarm converges to zero. Similarly, if « > 0 is taken as a

constant invariant with IV, the probability of detection converges to
1. In order to avoid getting such trivial statements, we shall assume
that I' = \/LN for some r > 0 and @ = aN~'/? for some fixed

a > 0, while ||p||® = N.

As will be discussed next, our derivations are mainly based on
the recent results concerning the first order and second order be-
haviour of the RTE. Particularly, it has been established in [8], that
the RTE exhibits the same behaviour as:

Sn(p) L

T 1-(1-p)

where vy (p) is the unique solution to:

1—p 1< 2 L
— Ciw;,w;C3 I

1 _
1= trCn (v (p)ply + (1~ p)Cw) t

More specifically, for any x > 0, define
Ri = [K + max (17 1—ct, 1]) ,

and let a and b be any random or deterministic vectors with unit
norm. Then,

N'™¢ sup 250.

PERK

a*Cy'(p)b —a"Sy' (p)b

A major consequence of the above convergence is that quadratic
forms with kernel Cx (p) have the same first order and second or-
der behaviour of quadratic forms associated with S (p). Hence, the
false alarm and detection probabilities can be derived by substituting
in Ty (p), Cn(p) by Sn(p). leading to the asymptotically equiva-

lent test statistic T (p) given by:

'8 (o)p
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The interest of this result is that, contrary to T\N(p), the statistics

Tn(p) =

of TN(,{)) can be successfully derived using standard results from
random matrix theory. In doing so, we can thus obtain asymptotic
closed-form expressions for the false alarm and detection probabili-
ties. These results are stated in the following theorems:

Theorem 1 (False alarm probability, [7]). Let m(—p) be the unique
solution to the following equation:

c(1— S\t
mi=p) = (p+ Ly uCy @+ (1 = pmi-pow )
Let RETE — [m +max(0,1 —¢™1), 1] As N,n — cowithcn —
c € (0,00),

.
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with Qn (p) £ (In + (1 = p)m(—p)Cn) ™" and.

where p = p (p—|—
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Theorem 2 (Detection probability). Consider the setting and nota-
tions of Theorem 1. As N,n — oo with cn — ¢ € (0, 00),

P TR (p) > —— H}
pes'[;l%)TE |: N (p) \/N| 1

2o (oo 205 )| 0

where the expectation is taken over the distribution of T, on rTE(p)
has the same expression as in Theorem 1 and

. V1 el = 9)2m(=p) FC3 Q3 (7)
P p*CnQ% (h)pP

%\ sealp*Qu()pl

and Q1 is the Marcum Q-function.

JRTE

According to Theorem 1 and Theorem 2, fN(p) behaves dif-
ferently depending on whether a signal is present or not. In par-
ticular, under Ho, v N’ fN(p) behaves like a Rayleigh distributed
random variate with parameter on rTE(p) While it becomes well-
approximated under H; by a Rice distributed random variable with
parameters grre(p) and on rrE(p)-

We will now discuss the choice of the regularization parameter
p and the threshold . Given the application under consideration,
it is sensible to set p and 7 in such a way to keep the asymptotic
false alarm probability equal to a fixed value 7 while maximizing
the asymptotic probability of detection. From Theorem 1, one can
easily see that the values of r and p that provide an asymptotic false
alarm probability equal to 7 should satisfy:

r
—— =/ —2logn.
on.rrE(p)
From these choices, we have to take those values that maximize the
asymptotic detection which is given, according to Theorem 2, by:

r
Q1 (gRTE(PL oNTE (p)> .
The second argument of ()1 should be kept fixed in order to ensure
the required asymptotic false alarm probability. As the Marcum-Q
function is an increasing function of its first argument, the optimiza-
tion of the detection probability boils down to considering the fol-
lowing values of p:

p € argmax { frre(p)} 2

where: 1
frre(p) £ Tagg%{TE (p)
Let pirg be among the values satisfying (2). The maximal asymp-

totic detection probability that can be obtained while satisfying an
asymptotic false alarm probability equal to 7 is thus given by:

PyrrE = Q1 (ﬁafRTE(p;{TE)v W) (3)
: RTE

where

rare = on,RTE(pRTE)V —2 log 7.

However, the optimization of frre(p) and the computation of
ON,RTE are not possible in practice, since their expressions features

the covariance matrix Cx which is unknown to the detector. Ac-
quiring a consistent estimate of frrr(p) and on,rTE based on the
available Cy is thus mandatory. This is the goal of the following
propositions.

Proposition 3 (Proposition 1 in [7]). Forp € (max({0,1—cy'},1).
Define,

P C (P
p*CL' ()P

l—cn+cenp)(1=p)

.2 1
UN,RTE(P) = 5(

and let 63 grp(1) £ limpyr 63 (p). Then, we have:

sup |UJ2V,RTE(P) - &JQV,RTE(p)’ =% 0.
pERRTE

Proposition 4. For p € (max {O, 1- cfvl} , 1), let

frre(p) = (p*f??\rl(p)p)2 (%tréw(p) - p)
(1—cn +enp)?

X A—1 ~N—2
p*Cy (p)p — pp*CL (p)P

and fRTE & limpy fRTE(,D). Then, we have:

sup | frre(p) — frre(p)| =55 0.
pERETE

Since the results in Proposition 4 and Theorem 2 are uniform in
p, we have the following corollary:

Corollary 5. Let frre (p) be defined as in Proposition 4. Define
PN as any value satisfying:

PN € arg S {fRTE(/J)} ~
Then, for every r > 0,

P (x/NTN(p}“V) > r|H1)

{P (\/NTN(p) > r) |H1} 250,

—  max
pERRTE

Gathering all the aforementioned results, it entails that an
asymptotically optimal design procedure is given by the follow-
ing steps:

e First, set the regularization parameter to one of the values
maximizing frrEe(p):

pi €arg max {fRTE(p)} ;

e Second, set the threshold to 7

7= &N,RTE(ﬁ}ﬁV)\/ —2 logn

where 7 is the required FAP.

The above design strategy is asymptotically optimal in the sense that
it should guarantee for /N and n large enough close-to-optimal de-
tection performances.



3. NUMERICAL RESULTS

In this section, we present some simulations validating our theoret-
ical derivations and comparing our selection procedure of the reg-
ularization parameter with the setting proposed in [5]. In all our
simulations, we consider that the secondary data are drawn from K
distribution with zero mean, covariance Cn and shape v. Addition-
ally, we assume that the array steering vector is given by:

p = a(fa) ®a(fs)

where fq and fs denote respectively the normalized target Doppler
frequency and the target spatial frequency [9], and a(fq) € CNe
and a(f;) € C™e are the temporal and spatial array steering vectors
given by:

[aNP(fd)]k = exp (]Qﬂ'(k) - 1)fd) ak = 17 e 7NP
[aNa (fS)L’ = exp (.]271—(4 - 1)f3) 7Z = 17 e 7Na'
with N, and N, being the number of pulses and that of sensors.
Then N = N,N,. We assume that the clutter covariance matrix
Cy is given by:
Ng
Cy=ca|lnv+ ZUQANP(fd“fsi)Afvp(fd1,7fsi)

i=1

where IV represents the total number of scatterers, fg, and fs, their
corresponding doppler and spatial frequencies and « is a normaliz-
ing factor and An, (fa;, fs;) = an,(fa;,) ® an, (fs;). We carry
out Monte Carlo simulations using 50 000 runs in order to repre-
sent the Receiver Operating Characteristics (ROC). For each run,
we generate the primary signal y = ap + x and the secondary
data x1,--- ,xy. This experiment is carried out when N, = 4,
Np, =32, fs = 0.5 fg = 0.2, n = 4.5 and n = 128. Under these
circumstances, we compare the detection performances of the pro-
posed detector with the one using the regularization setting of Ollila
in [5]. Fig. 1 reports the obtained results. The red curve corresponds
to the asymptotic detection probability given by (3). We note the su-
periority of the proposed detector despite the appearing discrepancy
between the empirical and theoretical results. This discrepancy is
obviously due to the number of samples and of antennas being too
small to ensure the accuracy of the asymptotic results. In order to
confirm this, we conduct again the same experiment when n = 320
and N = 320 (N, = 10, N, = 32). As seen from Fig. 2, a bet-
ter accuracy is achieved while the gain over the setting of Ollila is
maintained.

4. CONCLUSION

This paper addressed the design of the ANMF detector that uses the
RTE as a replacement of the unknown covariance matrix. A major
question that naturally arises in this case concerns the setting of the
regularization parameter. One major bottleneck towards the deter-
mination of the appropriate parameter lies in the difficulty to clearly
characterize the false alarm and detection probabilities. In order to
deal with this issue, we consider the regime in which the number
of secondary observations and their dimensions grow together to in-
finity. This allows us to simplify the design procedure since in this
asymptotic regime, the false alarm and detection probabilities con-
verge to deterministic quantities, which we compute using results
from random matrix theory. Based on these results, we proposed
to set the regularization parameter to the value that maximizes the
asymptotic detection probability while keeping the asymptotic false
alarm probability below a certain threshold.
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Fig. 1. ROC curves for non Gaussian clutters when N = 128 (N, =

10, N, = 25),n = 128, fs = 0.5, f4 = 0.2,a = 0.3
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Fig. 2. ROC curves for non-Gaussian clutters when N
320 (N, =10, N, = 32),n = 320, fs = 0.5, fa = 0.2,a =0.3
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